A comparative study on maximum entropy and discriminative training for acoustic modeling in automatic speech recognition
نویسندگان
چکیده
While Maximum Entropy (ME) based learning procedures have been successfully applied to text based natural language processing, there are only little investigations on using ME for acoustic modeling in automatic speech recognition. In this paper we show that the well known Generalized Iterative Scaling (GIS) algorithm can be used as an alternative method to discriminatively train the parameters of a speech recognizer that is based on Gaussian densities. The approach is compared with both a conventional maximum likelihood training and a discriminative training based on the Extended Baum algorithm. Experimental results are reported on a connected digit string recognition task.
منابع مشابه
Large Margin Training of Acoustic Models for Speech Recognition
LARGE MARGIN TRAINING OF ACOUSTIC MODELS FOR SPEECH RECOGNITION Fei Sha Advisor: Prof. Lawrence K. Saul Automatic speech recognition (ASR) depends critically on building acoustic models for linguistic units. These acoustic models usually take the form of continuous-density hidden Markov models (CD-HMMs), whose parameters are obtained by maximum likelihood estimation. Recently, however, there ha...
متن کاملDiscriminative maximum entropy language model for speech recognition
This paper presents a new discriminative language model based on the whole-sentence maximum entropy (ME) framework. In the proposed discriminative ME (DME) model, we exploit an integrated linguistic and acoustic model, which properly incorporates the features from n-gram model and acoustic log likelihoods of target and competing models. Through the constrained optimization of integrated model, ...
متن کاملLarge-scale, sequence-discriminative, joint adaptive training for masking-based robust ASR
Recently, it was shown that the performance of supervised timefrequency masking based robust automatic speech recognition techniques can be improved by training them jointly with the acoustic model [1]. The system in [1], termed deep neural network based joint adaptive training, used fully-connected feedforward deep neural networks for estimating time-frequency masks and for acoustic modeling; ...
متن کاملLinear Transforms in Automatic Speech Recognition: Estimation Procedures and Integration of Diverse Acoustic Data
Linear transforms have been used extensively for both training and adaptation of Hidden Markov Model (HMM) based automatic speech recognition (ASR) systems. Two important applications of linear transforms in acoustic modeling are the decorrelation of the feature vector and the constrained adaptation of the acoustic models to the speaker, the channel, and the task. Our focus in the first part of...
متن کاملAllophone-based acoustic modeling for Persian phoneme recognition
Phoneme recognition is one of the fundamental phases of automatic speech recognition. Coarticulation which refers to the integration of sounds, is one of the important obstacles in phoneme recognition. In other words, each phone is influenced and changed by the characteristics of its neighbor phones, and coarticulation is responsible for most of these changes. The idea of modeling the effects o...
متن کامل